Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Article in English | MEDLINE | ID: mdl-37502244

ABSTRACT

In clinical settings where airborne pathogens, such as Mycobacterium tuberculosis, are prevalent, they constitute an important threat to health workers and people accessing healthcare. We report key insights from a 3-year project conducted in primary healthcare clinics in South Africa, alongside other recent tuberculosis infection prevention and control (TB-IPC) research. We discuss the fragmentation of TB-IPC policies and budgets; the characteristics of individuals attending clinics with prevalent pulmonary tuberculosis; clinic congestion and patient flow; clinic design and natural ventilation; and the facility-level determinants of the implementation (or not) of TB-IPC interventions. We present modeling studies that describe the contribution of M. tuberculosis transmission in clinics to the community tuberculosis burden and economic evaluations showing that TB-IPC interventions are highly cost-effective. We argue for a set of changes to TB-IPC, including better coordination of policymaking, clinic decongestion, changes to clinic design and building regulations, and budgeting for enablers to sustain implementation of TB-IPC interventions. Additional research is needed to find the most effective means of improving the implementation of TB-IPC interventions; to develop approaches to screening for prevalent pulmonary tuberculosis that do not rely on symptoms; and to identify groups of patients that can be seen in clinic less frequently.

3.
Clin Infect Dis ; 75(2): 314-322, 2022 08 25.
Article in English | MEDLINE | ID: mdl-34864910

ABSTRACT

BACKGROUND: Tuberculosis (TB) case finding efforts typically target symptomatic people attending health facilities. We compared the prevalence of Mycobacterium tuberculosis (Mtb) sputum culture-positivity among adult clinic attendees in rural South Africa with a concurrent, community-based estimate from the surrounding demographic surveillance area (DSA). METHODS: Clinic: Randomly selected adults (≥18 years) attending 2 primary healthcare clinics were interviewed and requested to give sputum for mycobacterial culture. Human immunodeficiency virus (HIV) and antiretroviral therapy (ART) status were based on self-report and record review. Community: All adult (≥15 years) DSA residents were invited to a mobile clinic for health screening, including serological HIV testing; those with ≥1 TB symptom (cough, weight loss, night sweats, fever) or abnormal chest radiograph were asked for sputum. RESULTS: Clinic: 2055 patients were enrolled (76.9% female; median age, 36 years); 1479 (72.0%) were classified HIV-positive (98.9% on ART) and 131 (6.4%) reported ≥1 TB symptom. Of 20/2055 (1.0% [95% CI, .6-1.5]) with Mtb culture-positive sputum, 14 (70%) reported no symptoms. Community: 10 320 residents were enrolled (68.3% female; median age, 38 years); 3105 (30.3%) tested HIV-positive (87.4% on ART) and 1091 (10.6%) reported ≥1 TB symptom. Of 58/10 320 (0.6% [95% CI, .4-.7]) with Mtb culture-positive sputum, 45 (77.6%) reported no symptoms. In both surveys, sputum culture positivity was associated with male sex and reporting >1 TB symptom. CONCLUSIONS: In both clinic and community settings, most participants with Mtb culture-positive sputum were asymptomatic. TB screening based only on symptoms will miss many people with active disease in both settings.


Subject(s)
HIV Infections , Mycobacterium tuberculosis , Tuberculosis , Adult , Female , HIV Infections/complications , HIV Infections/diagnosis , HIV Infections/epidemiology , Humans , Male , Prevalence , Sensitivity and Specificity , South Africa/epidemiology , Sputum/microbiology , Surveys and Questionnaires , Tuberculosis/complications , Tuberculosis/diagnosis , Tuberculosis/epidemiology
4.
PLOS Glob Public Health ; 2(11): e0000603, 2022.
Article in English | MEDLINE | ID: mdl-36962521

ABSTRACT

Healthcare facilities are important sites for the transmission of pathogens spread via bioaerosols, such as Mycobacterium tuberculosis. Natural ventilation can play an important role in reducing this transmission. We aimed to measure rates of natural ventilation in clinics in KwaZulu-Natal and Western Cape provinces, South Africa, then use these measurements to estimate Mycobacterium tuberculosis transmission risk. We measured ventilation in clinic spaces using a tracer-gas release method. In spaces where this was not possible, we estimated ventilation using data on indoor and outdoor carbon dioxide levels. Ventilation was measured i) under usual conditions and ii) with all windows and doors fully open. Under various assumptions about infectiousness and duration of exposure, measured absolute ventilation rates were related to risk of Mycobacterium tuberculosis transmission using the Wells-Riley Equation. In 2019, we obtained ventilation measurements in 33 clinical spaces in 10 clinics: 13 consultation rooms, 16 waiting areas and 4 other clinical spaces. Under usual conditions, the absolute ventilation rate was much higher in waiting rooms (median 1769 m3/hr, range 338-4815 m3/hr) than in consultation rooms (median 197 m3/hr, range 0-1451 m3/hr). When compared with usual conditions, fully opening existing doors and windows resulted in a median two-fold increase in ventilation. Using standard assumptions about infectiousness, we estimated that a health worker would have a 24.8% annual risk of becoming infected with Mycobacterium tuberculosis, and that a patient would have an 0.1% risk of becoming infected per visit. Opening existing doors and windows and rearranging patient pathways to preferentially use better ventilated clinic spaces result in important reductions in Mycobacterium tuberculosis transmission risk. However, unless combined with other tuberculosis infection prevention and control interventions, these changes are insufficient to reduce risk to health workers, and other highly exposed individuals, to acceptable levels.

5.
Am J Trop Med Hyg ; 105(6): 1662-1671, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34662866

ABSTRACT

Tuberculosis (TB) remains the leading cause of hospitalization and in-hospital mortality in HIV-positive adults. Using data from hospital and clinic files, research databases, and autopsy, we describe causes and outcomes of admissions, and assess investigations for TB among adults with advanced HIV who were hospitalized after enrollment into the TB Fast Track trial in South Africa (2013-2015). A total of 251 adults [median CD4 count, 37.5 cells/µL; interquartile range, 14-68 cells/µL; 152 (60.6%) on antiretroviral therapy] experienced 304 admissions. Ninety-five of 251 of the first admissions (37.8%) were TB related; the next most common causes were AIDS-related illnesses (41 of 251, 16.3%) and surgical causes (21 of 251, 8.4%). Of those admitted with previously undiagnosed TB, 60% had CD4 counts less than 50 cells/µL. Overall, 137 of 251 individuals died as inpatients or within 90 days of their first discharge. Case fatality rates were particularly high for those admitted with TB (66%) and bacterial infections (80%). In 144 admissions for whom anti-TB treatment had not been started before admission, a sputum-based TB investigation was recorded in only 12 of 57 admissions (21.1%) in whom one or more TB symptom was recorded (24 of 57 started on treatment), and 6 of 87 admissions (6.9%) in whom no TB symptoms were recorded (14 of 87 started on treatment). Hospitalized adults with advanced HIV are at high risk of death. TB was a common cause of hospitalization but was under-investigated, even in those with symptoms. In addition to early identification of TB and other AIDS-related illnesses during hospitalization of adults with advanced HIV, improved pre-hospital management strategies are needed to interrupt disease progression and reduce poor outcomes in this already vulnerable population.


Subject(s)
Antiretroviral Therapy, Highly Active/statistics & numerical data , HIV Infections/epidemiology , Hospital Mortality , Hospitalization/statistics & numerical data , Patient Readmission/statistics & numerical data , Tuberculosis/epidemiology , Adolescent , Adult , Antitubercular Agents/therapeutic use , Disease Progression , Female , HIV Infections/drug therapy , Humans , Male , Middle Aged , Patient Discharge , South Africa , Tuberculosis/diagnosis , Tuberculosis/drug therapy , Young Adult
6.
BMJ Glob Health ; 6(10)2021 10.
Article in English | MEDLINE | ID: mdl-34697087

ABSTRACT

BACKGROUND: Elevated rates of tuberculosis in healthcare workers demonstrate the high rate of Mycobacterium tuberculosis (Mtb) transmission in health facilities in high-burden settings. In the context of a project taking a whole systems approach to tuberculosis infection prevention and control (IPC), we aimed to evaluate the potential impact of conventional and novel IPC measures on Mtb transmission to patients and other clinic attendees. METHODS: An individual-based model of patient movements through clinics, ventilation in waiting areas, and Mtb transmission was developed, and parameterised using empirical data from eight clinics in two provinces in South Africa. Seven interventions-codeveloped with health professionals and policy-makers-were simulated: (1) queue management systems with outdoor waiting areas, (2) ultraviolet germicidal irradiation (UVGI) systems, (3) appointment systems, (4) opening windows and doors, (5) surgical mask wearing by clinic attendees, (6) simple clinic retrofits and (7) increased coverage of long antiretroviral therapy prescriptions and community medicine collection points through the Central Chronic Medicine Dispensing and Distribution (CCMDD) service. RESULTS: In the model, (1) outdoor waiting areas reduced the transmission to clinic attendees by 83% (IQR 76%-88%), (2) UVGI by 77% (IQR 64%-85%), (3) appointment systems by 62% (IQR 45%-75%), (4) opening windows and doors by 55% (IQR 25%-72%), (5) masks by 47% (IQR 42%-50%), (6) clinic retrofits by 45% (IQR 16%-64%) and (7) increasing the coverage of CCMDD by 22% (IQR 12%-32%). CONCLUSIONS: The majority of the interventions achieved median reductions in the rate of transmission to clinic attendees of at least 45%, meaning that a range of highly effective intervention options are available, that can be tailored to the local context. Measures that are not traditionally considered to be IPC interventions, such as appointment systems, may be as effective as more traditional IPC measures, such as mask wearing.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Health Personnel , Humans , Infection Control , South Africa/epidemiology , Tuberculosis/epidemiology , Tuberculosis/prevention & control
7.
PLoS One ; 16(6): e0253096, 2021.
Article in English | MEDLINE | ID: mdl-34166388

ABSTRACT

BACKGROUND: In light of the role that airborne transmission plays in the spread of SARS-CoV-2, as well as the ongoing high global mortality from well-known airborne diseases such as tuberculosis and measles, there is an urgent need for practical ways of identifying congregate spaces where low ventilation levels contribute to high transmission risk. Poorly ventilated clinic spaces in particular may be high risk, due to the presence of both infectious and susceptible people. While relatively simple approaches to estimating ventilation rates exist, the approaches most frequently used in epidemiology cannot be used where occupancy varies, and so cannot be reliably applied in many of the types of spaces where they are most needed. METHODS: The aim of this study was to demonstrate the use of a non-steady state method to estimate the absolute ventilation rate, which can be applied in rooms where occupancy levels vary. We used data from a room in a primary healthcare clinic in a high TB and HIV prevalence setting, comprising indoor and outdoor carbon dioxide measurements and head counts (by age), taken over time. Two approaches were compared: approach 1 using a simple linear regression model and approach 2 using an ordinary differential equation model. RESULTS: The absolute ventilation rate, Q, using approach 1 was 2407 l/s [95% CI: 1632-3181] and Q from approach 2 was 2743 l/s [95% CI: 2139-4429]. CONCLUSIONS: We demonstrate two methods that can be used to estimate ventilation rate in busy congregate settings, such as clinic waiting rooms. Both approaches produced comparable results, however the simple linear regression method has the advantage of not requiring room volume measurements. These methods can be used to identify poorly-ventilated spaces, allowing measures to be taken to reduce the airborne transmission of pathogens such as Mycobacterium tuberculosis, measles, and SARS-CoV-2.


Subject(s)
Air Microbiology , Air Pollution, Indoor/prevention & control , COVID-19/prevention & control , COVID-19/transmission , Models, Biological , SARS-CoV-2 , Ventilation , COVID-19/epidemiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...